
CATALOGUE/TC-106, 01/2024

This version supersedes all previously published versions. All the bearing mentioned in this catalogue are manufactured with normal tolerance class. We can, however, supply other class bearing against specific requirement.

The material and Information contained here are for general information purpose only. You should not rely upon the material or information provided herein for any basis for making any business, legal or other decisions.

While we make every endeavour to keep the information accurate and correct, National Engineering Industries Ltd. makes no representations and warranties of any kind either express or implied about the correctness, accuracy, suitability, reliability or productivity with respect to information or concepts contained in this catalogue for any purpose. Any reliance on such material is solely at your risk and consequences.

© NEI Ltd. Jaipur 2024

75 years since its beginning, NBC remains India's leading bearings manufacturer and exporter. NBC is also the world's only bearings manufacturer to receive the prestigious Deming Grand Prize for Total Quality Management.

Since the challenges faced by industry are many, NBC offers a diverse range of exceptional bearings. NBC bearings are available in sizes from 04 mm bore to 2000 mm outer diameter.

* Products with special features like high temperature application, special heat treatment, coated roller/races and cage options are also available across product range.

10.1 The Necessity of a Proper Fit

ber Fit

In some cases improper fit may lead to damage and shorten bearing life. Therefore, it is necessary to make a careful analysis while selecting a proper fit.

Some of the negative conditions caused by improper fit are listed below:

- Raceway cracking, early pitting and displacement of raceways
- Raceway & shaft or housing abrasion caused by creeping in fretting corrosion
- Seizing caused by loss of internal clearance
- Increased noise & lowered rotational accuracy due to raceway groove deformation.

Selection of fits : Selection of proper fit depended upon thorough analysis of bearing operating conditions, including consideration of following factors:

(1) Condition of Rotation

This condition refer to the rotation of bearing ring being considered in relation to the direction of load. There are 3 different conditions:

- Rotating load
- Stationery load
- Direction of load indeterminate

(2) Magnitude of the load

The interference fit of a bearing's inner ring on its seating will be loosened with the increasing load, as the ring will expand under the influence of rotating load, & ring may begin co creep. If it is of shock character, greater interference is required.

10 Fits

The loss of interference due to increasing load can be estimated using the following equation:

When Fr ≤: 0.3Cor

 $\Delta dp = 0.08 \sqrt{\frac{d.F}{B}}$

When Fr≥0.3 Cor

∆dp=0.02 (Fr/B)

where,

 $\Delta dp = Interference decrease of inner ring (µm)$

Fr = Radial load (N)

B = Inner ring width (mm)

Cor= Basic static load (N)

(3) Bearing Internal Clearance

An interference fit of a bearing on the shaft or in housing means that ring is elastically deformed (expanded or compressed) and bearing's internal clearance reduced.

The internal clearance and permissible reduction depend on the type and size of the bearing.

- The reduction in clearance due to interference fit can be so large that bearings with an internal clearance which is greater than normal have to be used.
- The expansion of the inner ring and contraction of outer ring can be assumed to be approximately 60-80% of the interference, depending on the material of shaft and housing.

(4) Temperature Condition

Interference between inner ring & steel shalt is reduced as a result of temperature increase (difference between bearing temperature and ambient temperature). This can result in an easing of fit of the inner ring on its seating. While outer ring expansion may result in increase in clearance.

The decrease of the interference of the inner ring due to this

temperature difference may be calculated using following equation: $\Delta dt{=}0.0015\,x\,d\,x\,\Delta T$

Where Δdt = effective interference for temperature difference (μm)

 ΔT =Temperature difference between bearing temperature ambient temperature (deg. C).

d =Bearing bore diameter (mm)

(5) Running Accuracy Requirement

To reduce resilience and vibration, clearance fit should generally not be used for bearings, where high demands are placed on running accuracy.

(6) Design& Material of Shaft & Housing

The fit of a bearing ring on its seating must not lead to uneven distortion of the ring (out of roundness). This can be caused by discontinuity in the housing surface. Split housings are therefore not suitable where outer rings are to have an interference fit.

(7) Ease of Mounting & Dismounting

Bearings with clearance fit are usually easier to mount or dismount than those having interference fit. Where operating condition necessitate interference fit and it is essential that mounting & dismounting can be done easily, separable bearings or bearings with taper bore and adaptor or withdrawal sleeve may be used.

(8) Displacement of Non-Locating bearings

If non-separable bearings are used as floating bearings, if the ring is under stationary load, so that axial displacement has to take place in the housing bore, a hardened intermediate bushing is often fitted to the outer ring.

(9) Effective Interference and finish of shaft & housing

Roughness of the fitted surface is reduced since the roughness of the fitted surface is reduced during fitting, the effective interference becomes less than the apparent interference.

The amount of this interference decrease varies depending on roughness of the surfaces.

Normally, manufacturers assume the following interference reductions:

For ground shaft: 1-2.5 Micron

Machined Shaft: 5-7 Micron

(10) Fitting stress & ring expansion and contraction

While calculating the minimum required amount of interference, following factors should be factors should be taken into consideration:

- Interference is reduced by radial load
- Interference is reduced by difference between bearing temperature and ambient temperature
- Interference is reduced by variation of fitted surfaces

Important details on fits: Maximum interference should not exceed the ratio of 1:1000 of shaft or outside diameter.

Tight interference fits are recommended for:

(a) Operating conditions with large vibrations or shock loads

(b) Application using hollow shaft of housing with thin walls

(c) Application using housing made of light alloys or plastic.

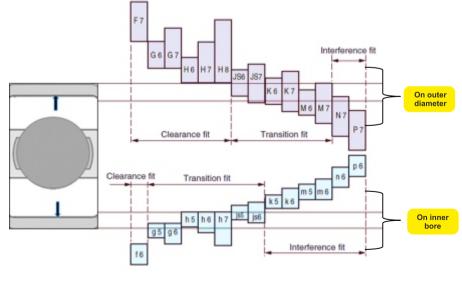
Loose interferences are recommended for:

(a) Application requiring high running accuracy

(b) Application using small size bearings or thin walled bearings.

Shaft and housing material, geometry, hardness and surface finish must be carefully controlled.

- Ground shafts should be finished to 1.3 micron Ra or better;
- For turned shafts a finish of 2.5 micron Ra or better; and
- Housing bores should be finished to 4 micron Ra or better.


To avoid shearing of aluminum and magnesium housing during bearing installation, steel inserts should be used; alternatively special lubricants may be used for Freezing and heating to facilitate assembly. A minimum interference fit of 0.0015" and 0.001" per inch of diameter is required for magnesium and aluminum housing respectively.

Where bearings are to be pressed onto a hollow shaft, allowance must be made for contraction of the hollow shaft in order to maintain the desired radial pressure.

10.2 Housing & Shaft Tolerance Class

NEI engineering department should be consulted for proper fitting practices on all special applications. For normal class bearing shaft and housing tolerances are given in table below. The tolerances are for solid steel shaft & housing of cast iron and steel.

Shaft & Housing tolerances

				Shaft diame	ters	
Type of load	Condition	Example	Ball bearings	Cylindrical, neddle and tapered roller bearings	Spherical roller bearings	Tolerance class symbol
	Light and variable loads (P<0,06C)	Conveyers lightly loaded mechanisms, bearings	18100 >100140	<u>≤</u> 40 >40100	-	j6 k6
Rotating inner ring load	Normal and heavy loads (P>0, 06C)	General mechanical engineering electric motors, turbines, pups, gearboxes,	≤18 >18100 >100140 >140200 >200280 - -	- <u><40</u> >40100 >100140 >140200 >200400 - -	- <u><</u> 40 > 4065 > 65100 > 100140 > 140280 > 280500 > 500	j5 K5(k6) m5(m6) n6 p6 r6 r7
	Heavy loads and shock loads, ardous working conditions (P>0, 12C)	Heavy duty railway vehicles axle bearings, traction motors, rolling mills	- -	>50140 >140200 200	>50100 >100200 > 200	n6 p6 r6
	High running accuracy, light loads (P<0,06C)	Machine tools	≤ 18 > 18100 > 100200 -	- ≤ 40 > 40100 > 140200		h5 j5 k5 m5
	Radial bearings with cylindr	ical core				
Stationary inner ring	Easy axial displacement of inner ring on shaft desirable	Wheels on non-roating shafts (free wheels)	All diameters			g6(f6)
load	Axial displacement of inner ring on shaft not necessary	Tension pullyes, sheaves				h6
Axial load	Common to all shaft & inner is not fixed	diameter. Shaft	<u>≤</u> 250 >250	<u><</u> 250 >250	<250 >250	j6 js6

Shaft tolerance class generally for radial bearings (classes 0, 6X and 6)

Fits for shaft for Tapered bore bearing (normal class) with adapter / withdrawal sleeve

All loads	For all sizes general applications	All shaft diameters	h9	
-----------	------------------------------------	---------------------	----	--

Housing tolerance class generally for radial bearings (classes 0, 6X and 6)

Load type	Conditions	Example	Tolerance class	Outer ring axial displacement in non - separable bearing
	Light and variable loads (P≤0,06C)	Roller bearing wheel hubs, connecting rod bearing	M7	Outer ring cannot move axially
Rotating outer	Normal and heavy loads (P>0,06C)	Ball bearing wheel hubs, connecting rod bearings, crane traveling wheels	N7	
otating outer ng load	Rotating outer ring load Heavy loads on bearings in thin walled housings, heavy shock loads (P>0,12C)	Conveyer rollers, rope sheaves, belt tension pulleys	Ρ7	
	Normal and heavy loads	Crank shaft main bearing		Outer ring cannot
Direction of load indeterminate	(P > 0,06C). Outer ring displacement is not necessary	Electric motors, pumps crankshaft main bearing	К7	move axially
	Heavy shock loads	Traction motors	M7	

Split or Sin	gle Housing (Stationar	y outer load)		
Load type	Conditions	Example	Tolerance class	Outer ring axial displacement in non- separable bearing
	Loads of all kinds	General mechanical	H7	Outer ring can move axially
Stationary	Light and normal loads Desirable outer ring displacement (P≤0,12 C)	engineering, railway axle boxes	H8	Outer ring cannot move axially
outer load	Quiet operation	Electric motor	H6	
	Heat conduction through shaft	Drying cylinders, large electrical machines with spherical roller bearings	G7	
Direction of load indeterminate	Light and normal loads Desirable outer ring displacement (P≤0,12 C)	medium-sized electric motors, pumps, crankshaft main bearings	J7	Outer ring can move axially

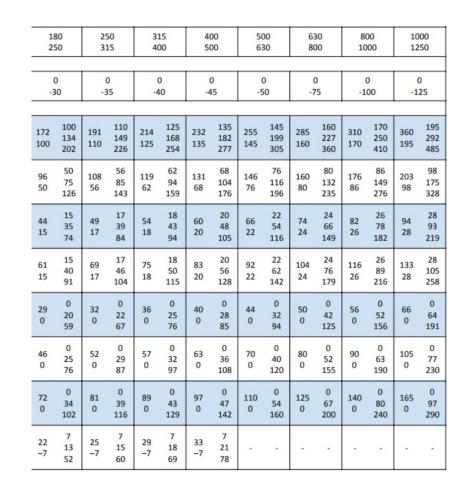
Numeric value table of fitting for radial bearing of 'Normal class' for metric size

Table for fit on shaft

flexible solutions

Table for fit on shaft

Unit µm


		lab	le t	or	tit (on s	sna	Τt													U	nιτ	μn	1	
	Nomin	al shaf	t diame	eter in r	nm	_																			
_	over incl.		6		0	1	8	3	8	5	0	5		6 8		8 10		10		12 14		14		16 18	
_	tdmp	•	bearin D 8	((ss Norr D LO	(0	-1	0	-1		-2	0	-2	0	-2		-2		-2	
	Shaft d		on, fit ir	_	_	_		_																	
Georgeo	f6	-10 -18	2 7 18	-13 -22	5 11 22	-16 -27	8 15 27	-20 -33	10 17 33	-25 -41	13 22 41	-30 -49	15 26 49	-30 -49	15 26 49	-36 -58	16 50 58	-36 -58	16 50 58	-43 -68	18 34 68	-43 -68	18 34 68	-43 -68	18 34 68
	g5	-4 -9	4 0 9	-5 -11	3 2 11	-6 -14	2 3 14	-6 -16	3 3 16	-9 -20	3 5 20	-10 -23	5 4 23	-10 -23	5 4 23	-12 -27	8 4 27	-12 -27	8 4 27	-14 -32	11 3 32	-14 -32	11 3 32	-14 -32	11 3 32
	g6	-4 -12	4 1 12	-5 -14	3 3 14	-6 -17	2 4 17	-7 -20	3 5 20	-9 -25	3 6 25	-10 -29	5 6 29	-10 -29	5 6 29	-12 -34	8 6 34	-12 -34	8 6 34	-14 -39	11 6 39	-14 -39	11 6 39	-14 -39	11 6 39
	hS	0 -5	8 4 5	0 -6	8 3 6	0 -8	8 3 8	0 -9	10 4 9	0 -11	12 4 11	0 -13	15 6 13	0 -13	15 6 13	0 -15	20 8 15	0 -15	20 8 15	0 -18	25 11 18	0 -18	25 11 18	0 -18	25 11 18
tion fit	h6	0 -8	8 3 8	0 -9	8 2 9	0 -11	8 2 11	0 -13	10 2 13	0 -16	12 3 16	0 -19	15 4 19	0 -19	15 4 19	0 -22	20 6 22	0 -22	20 6 22	0 -25	25 8 25	0 -25	25 8 25	0 -25	25 8 25
Transition	jS	3 -2	11 7 2	4 -2	12 7 2	5 -3	13 8 3	5 -4	15 9 4	6 -5	18 10 5	6 -7	21 12 7	6 -7	21 12 7	6 -9	26 14 9	6 -9	26 14 9	7 -11	32 18 11	7 -11	32 18 11	7 -11	32 18 11
	j6	6 -2	14 8 2	7 -2	15 9 2	8 -3	16 10 3	9 -4	19 11 4	11 -5	23 14 5	12 -7	27 16 7	12 -7	27 16 7	13 -9	33 19 9	13 -9	33 19 9	14 -11	39 22 11	14 -11	39 22 11	14 -11	39 22 11
	js5	2.5 -2.5	11 6 3	3 -3	11 6 3	4-4	12 6 4	4.5 -4.5	15 9 5	5.5 -5.5	18 10 6	6.5 -6.5	22 13 7	6.5 -6.5	22 13 7	7.5 -7.5	28 16 8	7.5 -7.5	28 16 8	9 -9	34 20 9	9-9	34 20 9	9 -9	34 20 9
	js6	4 4	12 7 4	4.5 -4.5	13 7 5	5.5 -5.5	14 8 6	6.5 -6.5	17 9 7	8 -8	20 11 8	9.5 -9.5	25 13 10	9.5 -9.5	25 13 10	11 -11	31 17 11	11 -11	31 17 11	12.5 -12.5	38 21 13	12.5 -12.5	38 21 13	12.5 -12.5	38 21 13
	k5	6 1	14 9 1	7 1	15 10 1	9 1	17 12 1	11 2	21 15 2	13 2	25 17 2	15 2	30 21 2	15 2	30 21 2	18 3	38 26 3	18 3	38 26 3	21 3	46 32 3	21 3	46 32 3	21 3	46 32 3
	kő	9 1	17 11 1	10 1	18 12 1	12 1	20 14 1	15 2	25 17 2	18 2	30 21 2	21 2	36 25 2	21 2	36 25 2	25 3	45 31 3	25 3	45 31 3	28 3	53 36 3	28 3	53 36 3	28 3	53 36 3
	m5	94	17 13 4	12 6	20 15 6	15 7	23 18 7	17 8	27 21 8	20 9	32 24 9	24 11	39 30 11	24 11	39 30 11	28 13	48 36 13	28 13	48 36 13	33 15	58 44 15	33 15	58 44 15	33 15	58 44 15
	m6	12 4	20 15 4	15 6	23 17 6	18 7	26 20 7	21 8	31 23 8	25 9	37 27 9	30 11	45 34 11	30 11	45 34 11	35 13	55 42 13	35 13	55 42 13	40 15	65 48 15	40 15	65 48 15	40 15	65 48 15
	n5	13 8	21 17 8	16 10	24 19 10	20 12	28 23 12	24 15	34 28 15	28 17	40 32 17	33 20	48 39 20	33 20	48 39 20	38 23	58 46 23	38 23	58 46 23	45 27	70 56 27	45 27	70 56 27	45 27	70 56 27
	пб	16 8	24 19 8	19 10	27 21 10	23 12	31 25 12	28 15	38 30 15	33 17	45 36 17	39 20	54 43 20	39 20	54 43 20	45 23	65 51 23	45 23	65 51 23	52 27	77 60 27	52 27	77 60 27	52 27	77 60 27
	р6	20 12	28 23 12	24 15	32 26 15	29 18	37 21 18	35 22	45 37 22	42 26	54 45 26	51 32	66 55 32	51 32	66 55 32	59 37	79 65 37	59 37	79 65 37	68 43	93 76 43	68 43	93 76 43	68 43	93 76 43
	p7	24 12	32 25 15	30 15	38 30 15	36 18	44 35 18	43 22	53 43 22	51 26	63 51 26	62 32	77 62 32	62 32	77 62 32	72 37	92 73 37	72 37	92 73 37	83 43	108 87 43	83 43	108 87 43	83 43	108 87 43

	200 220	22 25		25		28 31		31 35		35 40		40		45		50 56		56		65		7:	10 00		00
	0 30	0 -3		(-3		(-3	-	-4	0	-4		-4		-4	-	(-5		-5			0 75	-7			00
-50 -79	20 40 79	-50 -79	20 40 79	-56 -88	21 44 88	-56 -88	21 44 88	-62 -98	22 47 98	-62 -98	22 47 98	-68 -108	23 51 108	-68 -108	23 51 108	-76 120	26 58 120	-76 120	26 58 120	-80 -130	5 47 130	-80 -130	5 47 130	-86 -146	14 39 146
-15 -35	15 2 35	-15 -35	15 2 35	-17 -40	18 1 40	-17 -40	18 1 40	-18 -43	22 0 43	-18 -43	22 0 43	-20 -47	25 1 47	-20 -47	25 1 47	•		-		-	-	-		-	
-15 -44	15 5 44	-15 -44	15 5 44	-17 49	18 4 49	-17 49	18 4 49	-18 -54	22 3 54	-18 -54	22 3 54	-20 -60	25 3 60	-20 -60	25 3 60	-22 -66	28 4 66	-22 -66	28 4 66	-24 -74	51 9 74	-24 -74	51 9 74	-26 -82	74 24 82
0-20	30 13 20	0 -20	30 13 20	0 -23	35 16 23	0 -23	35 16 23	0 -25	40 18 25	0 -25	40 18 25	0 -27	45 21 27	0 -27	45 21 27	0 -32	50 23 32	0 -32	50 23 32	0 -36	75 38 36	0 -36	75 38 36	0 -40	100 53 40
0 -29	30 10 29	0 -29	30 10 29	0 -32	35 13 32	0 -32	35 13 32	0 -36	40 15 36	0 -36	40 15 36	0 -40	45 17 40	0 -40	45 17 40	0 -44	50 18 44	0	50 18 44	0 -50	75 33 50	0 -50	75 33 50	0 -56	100 48 56
7 -13	37 20 13	7 -13	37 20 13	7 -16	42 23 16	7 -16	42 23 16	7 -18	47 25 18	7 -18	47 25 18	7 -20	52 28 20	7 -20	52 28 20			-	-	-	-	-	-		
16 -13	46 26 13	16 -13	46 26 13	16 -16	51 29 16	16 -16	51 29 16	18 -18	58 33 18	18 -18	58 33 18	20 -20	65 37 20	20 -20	65 37 20	•	-	-	•	-	-	-		-	•
10 -10	40 23 10	10 -10	40 23 10	11.5 -11.5	47 27 12	11.5 -11.5	47 27 12	12.5 -12.5	53 32 13	12.5 -12.5	53 32 13	13.5 -13.5	59 35 14	13.5 -13.5	59 35 14	16 -16	65 38 16	16 -16	65 38 16	18 -18	91 55 18	18 -18	91 55 18	20 -20	118 72 20
14.5 -14.5	25	14.5 -14.5	45 25 15	16 -16	51 29 16	16 -16	51 29 16	18 -18	58 33 18	18 -18	58 33 18	20 -20	65 37 20	20 -20	65 37 20	22 -22	72 40 22	22 -22	72 40 22	25 -25	100 58 25	25 -25	100 58 25	28 -28	128 76 28
24 4	54 37 4	24 4	54 37 4	27 4	62 43 4	27 4	62 43 4	29 4	69 47 4	29 4	69 47 4	32 5	77 53 5	32 5	77 53 5	•		-		•		-	•	-	•
33 4	63 43 4	33 4	63 43 4	36 4	71 49 4	36 4	71 49 4	40 4	80 55 4	40 4	80 55 4	45 5	90 62 5	45 5	90 62 5	44 0	94 62 0	44 0	94 62 0	50 0	125 83 0	50 0	125 83 0	56 0	156 104 0
37 17	67 50 17	37 17	67 50 17	43 20	78 59 20	43 20	78 59 20	46 21	86 64 21	46 21	86 64 21	50 23	95 71 23	50 23	95 71 23			-			-			-	
46 17	76 56 17	46 17	76 56 17	52 20	57 65 20	52 20	57 65 20	57 21	97 72 21	57 21	97 72 21	63 23	108 80 23	63 23	108 80 23	70 26	120 88 26	70 26	120 88 26	80 30	155 113 30	80 30	155 113 30	90 34	190 138 34
51 31	81 64 31	51 31	81 64 31	57 34	92 73 34	57 34	92 73 34	62 37	102 80 37	62 37	102 80 37	67 40	112 88 40	67 40	112 88 40	·		-							
60 31	90 70 31	60 31	90 70 31	66 34	101 79 34	66 34	101 79 34	73 37	113 88 37	73 37	113 88 37	80 40	125 97 40	80 40	125 97 40	88 44	138 106 44	88 44	138 106 44	100 50	175 133 50	100 50	175 133 50	112 56	212 160 56
79 50	109 89 50	79 50	109 89 50	88 56	123 101 56	88 56	123 101 56	98 62	138 113 62	98 62	138 113 62	108 68	153 125 68	108 68	153 125 68	122 78	172 140 78	122 78	172 140 78	138 88	213 171 88	138 88	213 171 88	156 100	256 204 100
96 50	126 101 50	96 50	126 101 50	108 56	143 114 56	108 56	143 114 56	119 62	159 127 62	119 62	159 127 62	131 68	176 139 68	131 68	176 139 68	148 78	198 158 78	148 78	198 158 78	168 88	243 199 88	168 88	243 199 88	190 100	290 227 100

	Nomir	al hou	sing bo	re diam	eter in	mm											
	over incl.	(5		0	1	8 0	-	0	-	0 0		0 20		20 50		50 30
	Deviat	ions of	bearin	g outsi	de diam	neter in	m (tole	erance	class N	ormal)							
	tdmp		0 8) 8) 9		D 1		D 13	(-1) .5) .8) !5
	Housir	ng devi	ation, fi	t interf	erence	or fit c	learanc	e in m									
	E8	47 25	25 35 55	59 32	32 44 67	73 40	40 54 82	89 50	50 67 100	106 60	60 79 119	126 72	72 85 141	148 85	85 112 166	148 85	85 114 173
	F7	28 13	13 21 36	34 16	16 25 42	41 20	20 30 50	50 25	25 37 61	60 30	30 44 73	71 36	36 53 86	83 43	43 62 101	83 43	43 64 108
Clearance Fit	G6	14 5	5 11 22	17 6	6 12 25	20 7	7 14 29	25 9	9 18 36	29 10	10 21 42	34 12	12 24 49	39 14	14 28 57	39 14	14 31 64
ĕ	G7	20 5	5 13 28	24 6	6 15 32	28 7	7 17 37	34 9	9 21 45	40 10	10 24 53	47 12	12 29 62	54 14	14 33 72	54 14	14 36 79
	H6	9 0	0 6 17	11 0	0 6 19	13 0	0 7 22	16 0	0 9 27	19 0	0 11 32	22 0	0 12 37	25 0	0 14 43	25 0	0 17 50
	H7	15 0	0 8 23	18 0	0 9 26	21 0	0 10 30	25 0	0 12 36	30 0	0 14 43	35 0	0 17 50	40 0	0 19 58	40 0	0 22 65
	H8	22 0	0 10 30	27 0	0 12 35	33 0	0 14 42	39 0	0 17 50	46 0	0 20 59	54 0	0 23 69	63 0	0 27 81	63 0	0 29 88
	J6	5 -4	4 2 13	6 -5	5 1 14	8 -5	5 2 17	10 6	6 3 21	13 -6	6 5 26	16 6	6 6 31	18 -7	7 7 36	18 -7	7 10 43

Numeric value table of fitting for radial bearing of 'Normal class' for metric size

Numeric value table of fitting for radial bearing of 'Normal class' for metric size

Housing Fits

Unit µm

	J7	8 -7	7 1 16	10 -8	8 1 18	12 -9	9 1 21	14 -11	11 1 25	18 -12	12 2 31	22 -13	13 4 37	26 -14	14 5 44	26 -14	14 8 51
n fit	JS6	4.5 -4.5	4.5 2 12.5	5.5 -5.5	5.5 1 13.5	6.5 -6.5	6.5 0 15.5	8 -8	8 1 19	9.5 -9.5	9.5 0 22.5	11 -11	11 1 26	12.5 -12.5	12.5 1 30.5	12.5 -12.5	12.5 3 37.5
Transition fit	JS7	7.5 -7.5	7,5 1 15.5	9 -9	9 0 17	10.5 -10.5	10.5 1 19.5	12.5 -12.5	12.5 1 23.5	15 -15	15 1 28	17.5 -17.5	17.5 1 32.5	20 -20	20 1 38	20 -20	20 1 45
	K6	2 -7	7 1 10	2 -9	9 3 10	9 3 10	11 4 11	3 -13	13 4 14	4 -15	15 4 17	4 -18	18 6 19	4 -21	21 7 22	4 -21	21 4 29
	K7	5 -10	10 2 13	6 -12	12 3 14	6 -15	15 5 15	7 -18	18 6 18	9 -21	21 7 22	10 -25	25 8 25	12 28	28 9 30	12 -28	28 6 37
	M6	-3 -12	12 6 5	-4 -15	15 9 4	-4 -17	17 10 5	-4 -20	20 11 7	-5 -24	24 13 8	-6 -28	28 16 9	-8 -33	33 19 10	-8 -33	33 16 17
	M7	0 -15	15 7 8	0 -18	18 9 8	0 -21	21 11 9	0 -25	25 13 11	0 -30	30 16 13	0 -35	35 18 15	0 40	40 21 18	0 40	40 18 25
	N6	-7 -16	16 10 1	-9 -20	20 14 1	-11 -24	24 17 2	-12 -28	28 19 1	-14 -33	33 22 1	-16 -38	38 26 1	-20 -45	45 31 2	-20 -45	45 28 5
	N7	-4 -19	19 11 4	-5 -23	23 14 3	-7 -28	28 18 2	-8 -33	33 21 3	-9 -39	39 25 4	-10 -45	45 28 5	-12 -52	52 33 3	-12 -52	52 30 13
Interference Fit	P6	-12 -21	21 15 4	-15 -26	26 20 7	-18 -31	31 24 9	-21 -37	37 28 10	-26 -45	45 34 13	-30 -52	52 40 15	-36 -61	61 47 18	-36 -61	61 44 11
Int	P7	-9 -24	24 16 1	-11 -29	29 20 3	-14 -35	35 25 5	-17 -42	42 30 6	-21 -51	51 37 8	-24 -59	59 42 9	-28 -68	68 49 10	-28 -68	68 46 3

Unit µm

30 -16	16 9 60	36 -16	16 13 71	39 -18	18 14 79	43 -20	20 16 88	-		-		-			-
14.5 -14.5	14.5 5 44.5	16 -16	16 7 51	18 -18	18 6 58	20 -20	20 8 65	22 -22	22 10 72	25 -25	25 17 100	28 28	28 24 128	33 -33	33 31 158
23 -23	23 2 53	26 -26	26 3 61	28.5 -28.5	28.5 3 68.5	31.5 -31.5	31.5 4 76.5	35 -35	35 5 85	40 40	40 12 115	45 45	45 18 145	52.5 -52.5	52 24 177
5 -24	24 4 35	5 -27	27 5 40	7 -29	29 4 47	8 -32	32 4 53	0 44	44 12 50	0 -50	50 8 75	0 -56	56 4 100	0 -66	66 2 125
13 -33	33 8 43	16 -36	36 7 51	17 -40	40 8 57	18 45	45 9 63	0 -70	70 30 50	0 -80	80 28 75	0 -90	90 27 100	0 -105	105 28 125
-8 -37	37 17 22	-9 -41	41 19 26	-10 -46	46 21 30	-10 -50	50 22 35	-26 -70	70 38 24	-30 -80	80 38 45	-34 -90	90 38 66	-40 -106	106 45 85
0 -46	46 21 30	0 -52	52 23 35	0 -57	57 25 40	0 63	63 27 45	-26 -96	96 56 24	-30 -110	110 58 45	-34 -124	124 61 66	-40 -145	145 68 85
-22 -51	51 31 8	-25 -57	57 35 10	-26 -62	62 37 14	-27 -67	67 39 18	-44 -88	88 56 6	-50 -100	100 58 25	-56 -112	112 60 44	-66 -132	132 67 59
-14 -60	60 35 16	-14 -66	66 37 21	-16 -73	73 41 24	-17 -80	80 44 28	-44 -114	114 74 6	-50 -130	130 78 25	-56 -146	146 83 44	-66 -171	171 94 59
-41 -70	70 50 11	-47 -79	79 57 12	-51 -87	87 62 11	-55 -95	95 67 10	-78 -122	122 90 28	-88 -138	138 96 13	-100 -156	156 104 0	-120 -186	186 121 5
-33 -79	79 54 3	-36 -88	88 59 1	-41 -98	98 66 1	-45 -108	108 72 0	-78 -148	148 108 28	-88 -168	168 126 13	-100 -190	190 127 0	-120 -225	225 148 5

Limits and Fits Guideline TAPERED ROLLER BEARINGS ABMA RECOMMENDED FITTING PRACTICE

Shaft and housing material, geometry, hardness and surface finish must be carefully controlled. Ground shafts should be finished to 1.3 micron Ra or better; for turned shafts a finish of 2.5µm Ra or better; and housing bores should be finished to 4 micron Ra or better.

To avoid shearing aluminum and magnesium housing during bearing installation, steel inserts should be used; alternatively special lubricants may be used for freezing and heating to facilitate assembly.

A minimum interference fit is required for aluminum of 0.0010* per inch of diameter, for magnesium of 0.0015" per inch of diameter.

Where bearings are to be pressed onto a hollow shaft, allowance must be made for contraction of the hollow shaft in order to maintain the desired radial pressure.

AFBMA AUTOMOTIVE TAPERED CONE FITTING PRACTICE.

	Use	Application	Fit Type	Cone Bore B*	Shaft Diameter B*	Fit	Cone Bore B*	Shaft Diameter B*	Fit
L				ι	Jpto 3" bor	e	A	bove 3" bo	re
		Pinion, transmission rear wheels.	Adjustable cones		+0.0005 +0.0000		+0.0010 -0.0000	+0.0015 +0.0005	0.0015T 0.0005L
	Automotive Rotating Shafts	crossshaft, transfer case	Non-Adjustable cones	+0.0005 -0.0000	+0.0015 +0.0010	0.0015T 0.0005T	+0.0010 -0.0000	+0.0025 +0.0015	0.0025T 0.0005T
		Differential	Non-Adjustable cones	+0.0005 -0.0000		0.0025T 0.0010T	+0.0010 -0.0000	+0.0035 +0.0025	0.0035T 0.0015T
	Automotive Stationary Shafts	Front wheels, full floating rear wheels trailer wheels	Adjustable cones	+0.0005 -0.0000	-0.0002 -0.0007	0.0002L 0.0012L	+0.0010 -0.0000	-0.0002 -0.0012	0.0002L 0.0022L

AFBMA AUTOMOTIVE TAPERED CUP FITTING PRACTICE.

Use	Application	Fit Type	Cup O.D. D*	Housing Bore D*	Fit	Cup O.D. D*	Housing Bore D*	Fit	Cup O.D. D*	Housing Bore D*	Fit
			L	.ess 3" O.D) .	:	3" to 5"O.D).	A	bove 5" O.	D.
Auto-	Front wheels, full floating rear wheels pinion, differntial	Non-Adjustable cups	+0.0010 -0.0000		0.0025T 0.0005T			0.0030T 0.0010T		-0.0030 -0.0010	
motive		Non-Adjustable cups						0.0000L 0.0020L			
	Rear wheels, trans- mission, cross shaft & other application	Adjustable cups	+0.0010 -0.0000	-0.0000 +0.0010		-0.0010 -0.0000	+0.0000 +0.0010			-0.0000 +0.0020	0.0010T -0.0020L

*D - Normal cup O.D., L - Loose, T - Tight

THE NBC PRODUCT ENGINEERING DEPARTMENT SHOULD BE CONSULTED FOR PROPER FITIING PRACTICE ON ALL SPECIAL APPLICATIONS. AFBMA AUTOMOTIVE TAPERED CONE FITTING PRACTICE.

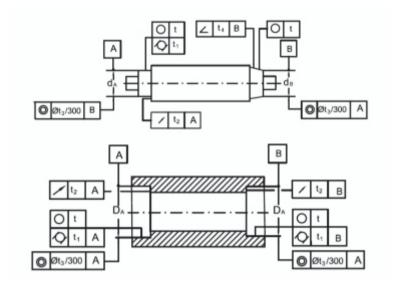


Table: ISO Tolerance grade for dimensions

over	incl.	по	IT1	IT2	IT3	IT4	IT5	IT6	IT7	IT8	IT9	IT10	IT11	IT12
mm		μm												
1	3	0,5	0,8	1,2	2	3	4 5 6	6	10	14	25	40	60	100
3	6	0,6	1	1,5	2,5	4		8	12	18	30	48	75	120
6	10	0,6	1	1,5	2,5	4		9	15	22	36	58	90	150
10	18	0,8	1,2	2	3	5	8	11	18	27	43	70	110	180
18	30	1	1,5	2,5	4	6	9	13	21	33	52	84	130	210
30	50	1	1,5	2,5	4	7	11	16	25	39	62	100	160	250
50	80	1,2	2	3	5	8	13	19	30	46	74	120	190	300
80	120	1,5	2,5	4	6	10	15	22	35	54	87	140	220	350
120	180	2	3,5	5	8	12	18	25	40	63	100	160	250	400
180	250	3	4,5	7	10	14	20	29	46	72	115	185	290	460
250	315	4	6	8	12	16	23	32	52	81	130	210	320	520
315	400	5	7	9	13	18	25	36	57	89	140	230	360	570
400	500	6	8	10	15	20	27	40	63	97	155	250	400	630
500	630	-	-	-	-		28	44	70	110	175	280	440	700
630	800	-	-	-	-		35	50	80	125	200	320	500	800
800 1 000 1 250	1 000 1 250 1 600	-	-	Ξ	Ξ	-	36 42 50	56 66 78	90 105 125	140 165 195	230 260 310	360 420 500	560 660 780	900 1 050 1 250
1 600 2 000	2 000 2 500	2	2	Ξ	-	2	60 70	92 110	150 175	230 280	370 440	600 700	920 1 100	1 500 1 750

10.4 Shaft and housing accuracies

Tolerance	Fit	Symbol of		Permissible deviation depending on the tolerance class				
name		deviation		P0 P6X	P6	Р5	P4(SP)	P2(UP)
Tolerance of dimension	shaft housing	-	-	IT6(IT5) IT7(IT6)	IT5 IT6	IT4 IT5	IT4 IT4	IT3 IT4
Tolerance of roundness	shaft	00	t,t,	$\frac{1T4}{2}\left(\frac{1T3}{2}\right)$	$\frac{ T3 }{2}\left(\frac{ T2 }{2}\right)$	<u>IT2</u> 2	<u>IT1</u> 2	<u>1T0</u> 2
and cylindricity	housing		t,t,	$\frac{1T5}{2}\left(\frac{1T4}{2}\right)$	$\frac{1T4}{2}\left(\frac{1T2}{2}\right)$	<u>IT3</u> 2	<u>IT2</u> 2	<u>IT1</u> 2
Tolerance of face runout	shaft housing	≭	t ₂	IT4 (IT3) IT5 (IT4)	IT3 (IT2) IT4 (IT3)	IT2 IT2	IT1 IT2	ITO IT1
Tolerance of concentricity	shaft housing	Ø	t3	IT5 IT6	IT4 IT5	IT4 IT5	IT3 IT4	IT3 IT3
Tolerance of angularity	shaft	<	t4	<u> </u>	1T6 2	<u>IT4</u> 2	<u>IT3</u> 2	<u>IT2</u> 2

For IT grade values refer table for ISO tolerance grade.

